Changes in basophil reactivity and synthesis of specific immunoglobulins E influenced by allergen-immunotherapy

L.Yu. Barycheva1,2, L.V. Dushina1, Yu.N. Medvedenko1,2

1 Federal State Budgetary Institution for Higher Education Stavropol State Medical University of the Ministry of Health, Russian Federation; Department of Immunology; Stavropol, Russia;
2 Stavropol Regional Clinical&Counseling Diagnostics Center; Stavropol, Russia;

ALLERGOLOGY AND IMMUNOLOGY IN PEDIATRICS, Volume 64 • Number 1 • March 2021, pp. 15-23
DOI: 10.24412/2500-1175-2021-1-15-23

The study focused on spontaneous and allergen-induced basophil activation (BAT) as well as on specific IgE indicators to major meadow grass pollen allergens on the background of allergen-immunotherapy (AIT) in patients sensitized to weed pollen.
The study revealed that the specific IgE indicators to major ragweed allergens (nAmb a 1) and wormwood (nArt v 1) allergens, as well as the ratios of spec. IgE nAmb a 1 / gen. IgE, and spec. IgE nArt v 1 / gen. IgE do not change after 2 courses of pre-seasonal ASIT. There was a decrease detected in BAT indicators under the effect of ASIT. An early decrease in the BAT stimulation index (BAT IC) was shown to be more common for patients with positive treatment outcomes.

  1. Traidl-Hoffmann C. Allergy — an environmental disease. Bundesgesundheitsbl Gesundheitsforsch Gesundheitsschutz. 2017; 60(6): 584–591. doi:10.1007/s00103-017-2547-4.
  2. Porteous T., Wyke S., Smith S. [et al.] «Help for Hay fever», a goal — focused intervention for people with intermittent allergic rhinitis, delivered in Scottish community pharmacies: study protocol a pilot cluster randomized controlled trial. Trials. 2013; 15(14): 217. doi:10.1186/1745-6215-14-217.
  3. Damialis A., Traidl-Hoffmann C., Treudler R. Climate Change and Pollen Allergies. Biodiversity and Health in the Face of Climate Change. Springer, Cham. 2019. doi:10.1007/978-3-030-02318-83.
  4. Bergmann K.C., Heinrich J., Niemann H. Current status of allergy prevalence in Germany: position paper of the environmental medicine commission of the Robert Koch institute. Allergo J. Int. 2016; 25:6–10. doi:10.1007/s40629-016-0092-6.
  5. Аллергология и клиническая иммунология. Клинические рекомендации / Под ред. Р.М. Хаитова, Н.И. Ильиной. Москва: ГЭОТАР — Медиа, 2019. [Allergologiya i klinicheskaya immunologiya. Klinicheskie rekomendatsii / Pod red. M. Khaitova, N.I. Il’inoy. Moskva: GEOTAR — Media, 2019. (In Russ.)].
  6. Трофименко С.Л., Ракова К.А. Заболеваемость поллинозом в Ростове-на-Дону. Российская ринология. 2015; 23: 36–39. [Trofimenko L., Rakova K.A. Pollen allergy in Rostov-on-Don. — Rossiiskaya Rinologiya. 2015; 23: 36–39. (In Russ.)]. doi: 10.17116/rosrino201523136-39
  7. Мачарадзе Д.Ш. Амброзийная аллергия. Особенности диагностики и лечения. Медицинский оппонент 2019; 2(6): 48–55. [Macharadze D.Sh. Ambrosia allergy. Features of diagnosis and treatment. — Meditsinskiy opponent. 2019; 2(6): 48– (In Russ.)].
  8. Pfaar O., Bonini S., Cardona V. [et al.]. Perspectives in allergen immunotherapy: 2017 and beyond. Allergy. 2018;73(104): 5– doi:10.1111/all.13355
  9. Масальский С.С., Смолкин Ю.С. Антигистаминные препараты в терапии аллергического ринита. Аллергология и иммунология в педиатрии. 2018; 2(53): 5–13. [Smolkin Y.S., Masalskiy S.S. Antihistamines in the treatment of allergic rhinitis. — Allergologiya i immunologiya v pediatrii. 2018; 2(53): 5– (In Russ.)]. doi:10.24411/2500-1175-2018-00006.
  10. Балаболкин И.И. Поллиноз у детей и подростков: современные аспекты патогенеза и тенденции в терапии. Аллергология и иммунология в педиатрии. 2020; 62 (3): 6–14. [Balabolkin I.I. Pollinosis in children and adolescents: modern aspects of pathogenesis and tendencies in therapy. — Allergologiya i immunologiya v pediatrii. 2020; 62 (3): 6– (In Russ.)]. doi: 10.24411/2500-1175-2020-10007
  11. Sindher S.B., Long A., Acharya S. The Use of Biomarkers to Predict Aero-Allergen and Food Immunotherapy Responses. Clin. Rev. Allergy Immunol. 2018; 55(2): 190– doi:10.1007/s12016-018-8678-z.
  12. Lam H.Y. Tergaonkar V., Ahn K.S. Mechanisms of allergen-specific immunotherapy for allergic rhinitis and food allergies. Biosci Rep. 2020; 40(4). BSR20200256. doi:10.1042/BSR20200256.
  13. Sindher S.B., Long A., Acharya S. [et al.] The Use of Biomarkers to Predict Aero-Allergen and Food Immunotherapy Responses. Clin. Rev. Allergy Immunol. 2018; 55(2): 190– doi:10.1007/s12016-018-8678-z.
  14. Moingeon P. Biomarkers for Allergen Immunotherapy: A “Panoromic” View. Immunol. Allergy Clin. North Am. 2016; 36(1): 161– doi:10.1016/j.iac.2015.08.004.
  15. Hamilton R.G. Microarray Technology applied to human allergic disease. Microarrays (Basel). 2017; 6(1): 3. doi: 10.3390/microarrays6010003.
  16. Callery E.L., Keymer С., Barnes N.A., Rowbottom A.W. Component-resolved diagnostics in the clinical and laboratory investigation of allergy. Ann. Clin. Biochem. 2020; 57(1): 26– doi: 10.1177/0004563219877434.
  17. Feng M., Zeng X., Su Q. Allergen Immunotherapy-Induced Immunoglobulin G4 Reduces Basophil Activation in House Dust Mite-Allergic Asthma Patients. J. Front. Cell Dev. Biol. 2020; 8: doi: 10.3389/fcell.2020.00030.
  18. Shamji, M.H., Durham S.R. Mechanisms of allergen immunotherapy for inhaled allergens and predictive biomarkers. J. Allergy Clin. Immunol. 2017; 140(6): P. 1485– doi:10.1016/j.jaci.2017.10.010.
  19. Pfaar O., Demoly P., Gerth van Wijk R. [et al.]. European Academy of Allergy and Clinical Immunology. Recommendations for the standardization of clinical outcomes used in allergen immunotherapy trials for allergic rhinoconjunctivitis: an EAACI Position Paper. Allergy. 2014; 69(7):854–8 doi: 10.1111/all.12383.
  20. Адо А.Д. Частная аллергология. М.: Медицина, 1976. 510 c. [Ado A.D. Chastnaya allergologiya. M.: Meditsina, 1976. 510 c. (In Russ.)].
  21. Chen J., Zhou Y., Wang Y. [et al.] Specific immunoglobulin E and immunoglobulin G4 toward major allergens of house-dust mite during allergen-specific immunotherapy. Am. J. Rhinol. Allergy. 2017; 31(3): 156– doi: 10.2500/ajra.2017.31.4434.
  22. Sahin E., Bafaqeeh S.A., Guven S.G. [et al.]. Mechanism of action of allergen immunotherapy. Am. J. Rhinol. Allergy. 2016; 30(5): 1– doi:10.2500/ajra.2016.30.4367.
  23. Narisety S.D., Frischmeyer-Guerrerio P.A., Keet C.A. [et al.]A randomized, double-blind, placebo-controlled pilot study of sublingual versus oral immunotherapy for the treatment of peanut allergy. J. Allergy Clin. Immunol. 2015; 135(5): 1275– doi:10.1016/j.jaci.2014.11.005. 
  24. Vickery B.P., Scurlock A.M., Kulis M. [et al.]. Sustained unresponsiveness to peanut in subjects who have completed peanut oral immunotherapy. J. Allergy Clin. Immunol. 2014; 133(2): 468– doi: 10.1016/j.jaci.2013.11.007. 
  25. Gorelik M., Narisety S.D., Guerrerio A.L. [et al.]. Suppression of the immunologic response to peanut during immunotherapy is often transient. J. Allergy Clin. Immunol. 2015; 135(5): 1283– doi: 10.1016/j.jaci.2014.11.010. 
  26. Zidarn M., Kosnik M., Silar M. [et al.]. Sustained effect of grass pollen subcutaneous immunotherapy on suppression of allergen-specific basophil response; a real-life, nonrandomized controlled study. Allergy. 2015; 70: 547– doi:10.1111/all.12581.
  27. Liм, Li M., Yue W. [et al.]. Predictive factors for clinical response to allergy immunotherapy in children with asthma and rhinitis. Int. Arch. Allergy Immunol. 2014; 164(3): 210–217. doi:10.1159/000365630.
  28. Andorf S., Borres M.P., Block W. [et al.]. Association of Clinical Reactivity with Sensitization to Allergen Components in Multifood-Allergic Children. J Allergy Clin Immunol Pract. 2017; 5(5): 1325– doi:10.1016/j.jaip.2017.01.016.
  29. Bidad K., Nawijn M.C., Van Oosterhout A.J. [et al.]. Basophil activation test in the diagnosis and monitoring of mastocytosis patients with wasp venom allergy on immunotherapy. Cytometry B Clin. Cytom. 2014; 86(3): 183–doi:10.1002/cyto.b.21148.
  30. Ozdemir S.K., Sin B.A., Guloglu D. [et al.]. Short-term preseasonal immunotherapy: is early clinical efficacy related to the basophil response? Int. Arch. Allergy Immunol. 2014; 164(3): 237– doi: 10.1159/000365628. 
  31. Sainte-Laudy J. Touraine F., Cluzan D., Belle Moudourou F. Follow-Up of Venom Immunotherapy on Flow Cytometry and Definition of a Protective Index. Int. Arch. Allergy Immunol. 2016; 170(4): 243– doi:10.1159/000449162.
  32. Plewako H., Wosinska K., Arvidsson M. [et al.]. Basophil interleukin 4 and interleukin 13 production is suppressed during the early phase of rush immunotherapy. Int. Arch. Allergy Immunol. 2006; 141(4): 346– doi: 10.1159/000095461. 
  33. Gokmen N.M. Ersoy R.O., Gulbahar O. [et al.]. Desensitization effect of preseasonal seven-injection allergoid immunotherapy with olive pollen on basophil activation: the efficacy of olive pollen-specific preseasonal allergoid immunotherapy on basophils. Int. Arch. Allergy Immunol. 2012; 159: 75– doi:10.1159/000335251. 
  34. Schmid J.M., Würtzen P.A., Dahl R., Hoffmann H.J. Early improvement in basophil sensitivity predicts symptom relief with grass pollen immunotherapy. J Allergy Clin Immunol. 2014;134: 741–74
  35. Van Overtvelt L., Baron‐Bodo V., Horiot S. [et al.]. Changes in basophil activation during grass‐pollen sublingual immunotherapy do not correlate with clinical efficacy. Allergy. 2011; 66(12): 1530– doi:10.1111/j.1398-9995.2011.02696.x.
  36. Czarnobilska E.M., Bulanda M., Śpiewak R. The usefulness of the basophil activation test in monitoring specific immunotherapy with house dust mite allergens. Postepy Dermatol. Alergol. 2018; 35(1): 93– doi:10.5114/ada.2018.73169.
  37. Kim S.H., Kim S.H., Chung S.J. [et al.]. Changes in basophil activation during immunotherapy with house dust mite and mugwort in patients with allergic rhinitis. Asia Pac. Allergy. 2018; 8(1): 6. doi:10.5415/apallergy.2018.8.e6.
  38. Rodríguez Trabado A., Cámara Hijón C., Ramos Cantariño A. [et al.]. Short-, Intermediate-, and Long-Term Changes in Basophil Reactivity Induced by Venom Immunotherapy. Allergy Asthma Immunol. Res. 2016; 8(5): 412– doi:10.4168/aair.2016.8.5.412.
  39. Witting Christensen S.K., Kortekaas Krohn I., Thuraiaiyah J. [et al.]. Sequential allergen desensitization of basophils is non-specific and may involve p38 MAPK. Allergy. 2014; 69(10): 1343– doi:10.1111/all.12482.
  40. Keet C.A., Frischmeyer-Guerrerio P.A., Thyagarajan A. [et al.]. The safety and efficacy of sublingual and oral immunotherapy for milk allergy. J. Allergy Clin. Immunol. 2012; 129(2): 448– doi: 10.1016/j.jaci.2011.10.023. 
  41. Thyagarajan A., Jones S.M., Calatroni A. [et al.]. Evidence of pathway-specific basophil anergy induced by peanut oral immunotherapy in peanut-allergic children. Clin. Exp. Allergy. 2012; 42(8): 1197– doi:10.1111/j.1365-2222.2012.04028.x.
  42. MacGlashan, D.W. Syk expression and IgE-mediated histamine release in basophils as biomarkers for predicting the clinical efficacy of omalizumab. J. Allergy Clin. Immunol. 2017; 139(5): 1680– doi:10.1016/j.jaci.2016.12.965. 

Barycheva LYu, Dushina LV, Medvedenko YuN. Changes in basophil reactivity and synthesis of specific immunoglobulins e influenced by allergen-immunotherapy. Allergology and Immunology in Pediatrics. 2020;1(64):15-23. https://doi.org/10.24412/2500-1175-2021-1-15-23

For correspondense

Liudmila Yu. Barycheva, MD, Professor, Head of the Department of Immunology with a course of continuing professional education at Stavropol State Medical University
ORCID: 0000-0002-4069-0566
Address: 310 Mira street, 355017, Stavropol, Russia
E-mail: for_ludmila@inbox.ru

ALLERGOLOGY and IMMUNOLOGY in PEDIATRICS